Monitoring General Functions in Distributed Systems with Minimal Communication
نویسنده
چکیده
1 1 Safe Zones: An Efficient Approach to Distributed Monitoring 3 1.1 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.2 Preliminaries: Minkowski Average . . . . . . . . . . . . . . . . . 8 1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Overview of the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4.1 Safe-Zone Allocation as an Optimization Problem . . . . . . . . 11 1.4.2 The Parametric Family of Allowable Safe Zone Shapes . . . . . . 13 1.4.3 Convexity of S and the Safe Zones . . . . . . . . . . . . . . . . . 13 1.5 Safe Zone Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.5.1 Computing the Target Function . . . . . . . . . . . . . . . . . . . 15 1.5.2 Checking the Constraints . . . . . . . . . . . . . . . . . . . . . . 15 1.6 Hierarchical Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.7 The Complexity of Computing Optimal Safe Zones . . . . . . . . . . . . 18 1.8 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.8.1 Data, Methods, and Monitored Functions . . . . . . . . . . . . . 21 1.8.2 Ratio Queries with Triangular Safe Zones . . . . . . . . . . . . . 22 1.8.3 Improvement over GM Algorithm . . . . . . . . . . . . . . . . . . 23 1.8.4 Ratio Queries: Hierarchical Implementation . . . . . . . . . . . 23 1.8.5 Chi-square monitoring in 5 dimensions with axis-aligned boxshaped safe zones . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.8.6 3-Dimensional Data, Quadratic Function, Polygonal Safe Zones . 26 1.8.7 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.8.8 Improvement Factor and Dimensionality . . . . . . . . . . . . . . 28 1.9 Chapter Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 T ec hn io n C om pu te r Sc ie nc e D ep ar tm en t M .S c. T he si s M SC -2 01 221 2 01 2 2 Discrete Safe Zones: Biclique Approach 29 2.1 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.4 Biclique Formalization k = 2 . . . . . . . . . . . . . . . . . . . . . . . . 32 2.4.1 Greedy Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.4.2 Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.5 Generalized Biclique Formalization . . . . . . . . . . . . . . . . . . . . . 34 2.6 Hierarchical Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.6.1 Classes of functions . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.6.2 Pruning nodes in the Biclique problem . . . . . . . . . . . . . . . 38 2.7 Advantages over the geometric Safe Zones . . . . . . . . . . . . . . . . . 39 3 Violation Resolution in Distributed Stream Networks 41 3.1 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.4 Violation Resolution and Minimum Resolving Set . . . . . . . . . . . . . 44 3.4.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.4.2 Resolving Local Violations . . . . . . . . . . . . . . . . . . . . . 45 3.4.3 Running Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.5 Generic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.5.1 Minimum Resolving Set is NP-Hard . . . . . . . . . . . . . . . . 51 3.5.2 Probabilistic Analysis of the Algorithm . . . . . . . . . . . . . . 52 3.6 Homogeneous Data Instance . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.7 Heterogeneous Data Instance . . . . . . . . . . . . . . . . . . . . . . . . 57 3.7.1 The Heterogeneous Data Challenge . . . . . . . . . . . . . . . . . 57 3.7.2 Maximum Matching Tree Algorithm . . . . . . . . . . . . . . . . 57 3.7.3 Maximum Matching Tree Construction . . . . . . . . . . . . . . 58 3.7.4 Distributed Variant of MMT . . . . . . . . . . . . . . . . . . . . 61 3.8 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.8.1 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.8.2 Scoring Functions and Local Constraints . . . . . . . . . . . . . . 62 3.8.3 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.8.4 Compared Instances . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.8.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 65 3.9 Chapter Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
منابع مشابه
On Optimal Hierarchical Configuration of Distributed Systems on Mesh and Hypercube
This paper studies hierarchical configuration of distributed systems for achieving optimized system performance. A distributed system consists of a collection of local processes which are distributed over the network of processors and cooperate to perform some functions. A hierarchical approach is to group and organize the distributed processes into a logical hierarchy of multiple levels, so as...
متن کاملADAPTIVE FUZZY TRACKING CONTROL FOR A CLASS OF PERTURBED NONLINEARLY PARAMETERIZED SYSTEMS USING MINIMAL LEARNING PARAMETERS ALGORITHM
In this paper, an adaptive fuzzy tracking control approach is proposed for a class of single-inputsingle-output (SISO) nonlinear systems in which the unknown continuous functions may be nonlinearlyparameterized. During the controller design procedure, the fuzzy logic systems (FLS) in Mamdani type are applied to approximate the unknown continuous functions, and then, based on the minimal learnin...
متن کاملOn properties of dependent general progressively type-II censored order statistics
In the literature of life-testing, general progressive censoring has been studied extensively. But, all the results have been developed under the key assumption that the units undertest are independently distributed. In this paper, we study general progressively Type-II censored order statistics arising from identical units under test which are jointly distributed according to an Archimedean co...
متن کاملA Hybrid Modeling for Continuous Casting Scheduling Problem
This paper deals with a multi-agent-based interval type-2 fuzzy (IT2F) expert systemfor scheduling steel continuous casting. Continuous caster scheduling is a complex and extensiveprocess that needs expert staff. In this study, a distributed multi-agent-based structure is proposed as asolution. The agents used herein can cooperate with each other via various communication protocols.To facilitat...
متن کاملTask Assignment on Distributed-memory Systems with Adaptive Wormhole Routing Task Assignment on Distributed-memory Systems with Adaptive Wormhole Routing
Assignment of tasks of a parallel program onto processors of a distributed-memory system is critical to obtain minimal program completion time by minimizing communication overhead. Wormhole-routing switching technique, with various adaptive routing strategies, is increasingly becoming the trend to build scalable distributed-memory systems. This paper presents task assignment heuristics for such...
متن کاملMINIMAL AND STATEWISE MINIMAL INTUITIONISTIC GENERAL L-FUZZY AUTOMATA
In this note, by considering the notions of the intuitionistic general L-fuzzy automaton and $(alpha, beta)$-language, we show that for any $(alpha, beta)$-language $mathcal{L}$, there exists a minimal intuitionistic general L-fuzzy automaton recognizing $mathcal{L}$.We prove that the minimal intuitionistic general L-fuzzy automaton is isomorphic with threshold $(alpha,beta)$ to any $(alpha, be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012